
Logistic Regression

James H. Steiger

Department of Psychology and Human Development
Vanderbilt University

James H. Steiger (Vanderbilt University) Logistic Regression 1 / 38



Logistic Regression
1 Introduction

2 Some Probability Theory Basics

The Binomial Distribution

3 Logistic Regression with a Single Predictor

Coronary Heart Disease

The Logistic Regression Model

Fitting with glm

Plotting Model Fit

Interpreting Model Coefficients

4 Assessing Model Fit in Logistic Regression

The Deviance Statistic

Comparing Models

Test of Model Fit

5 Logistic Regression with Several Predictors

6 Generalized Linear Models

James H. Steiger (Vanderbilt University) Logistic Regression 2 / 38



Introduction

Introduction

Logistic Regression deals with the case where the dependent variable is binary, and the
conditional distribution is binomial.
Recall that, for a random variable Y having a binomial distribution with parameters n
(the number of trials), and p ( the probability of “success” , the mean of Y is np and the
variance of Y is np(1− p).
Therefore, if the conditional distribution of Y given a predictor X is binomial, then the
mean function and variance functions will be necessarily related.
Moreover, since, for a given value of n, the mean of the conditional distribution is
necessarily bounded by 0 and n, it follows that a linear function will generally fail to fit at
large values of the predictor.
So, special methods are called for.
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Some Probability Theory Basics The Binomial Distribution

Some Probability Theory Basics
The Binomial Distribution

This discrete distribution is one of the foundations of modern categorical data analysis
The binomial random variable X represents the number of “successes” in N outcomes of
a binomial process
A binomial process is characterized by

N independent trials
Only two outcomes, arbitrarily designated “success” and “failure”
Probabilities of success and failure remain constant over trials

Many interesting real world processes only approximately meet the above specifications
Nevertheless, the binomial is often an excellent approximation
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Some Probability Theory Basics The Binomial Distribution

Some Probability Theory Basics
The Binomial Distribution

The binomial distribution is a two-parameter family, N is the number of trials, p the
probability of success
The binomial has pdf

Pr(X = r) =

(
N

r

)
pr (1− p)N−r

The mean and variance of the binomial are

E (X ) = Np

Var(X ) = Np(1− p)

James H. Steiger (Vanderbilt University) Logistic Regression 5 / 38



Some Probability Theory Basics The Binomial Distribution

Some Probability Theory Basics
The Binomial Distribution

The B(N, p) distribution is well approximated by a N(Np,Np(1− p)) distribution as long
as p is not too far removed from .5 and N is reasonably large
A good rule of thumb is that both Np and N(1− p must be greater than 5
The approximation can be further improved by correcting for continuity
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Logistic Regression with a Single Predictor Coronary Heart Disease

Logistic Regression with a Single Predictor
Coronary Heart Disease

As an example, consider some data relating age to the presence of coronary disease.
The independent variable is the age of the subject, and the dependent variable is binary,
reflecting the presence or absence of coronary heart disease.

> chd.data <- read.table(

+ "http://www.statpower.net/R2101/chdage.txt",

+ header=T)

> attach(chd.data)

> plot(AGE,CHD)

James H. Steiger (Vanderbilt University) Logistic Regression 7 / 38



Logistic Regression with a Single Predictor Coronary Heart Disease

Logistic Regression with a Single Predictor
Coronary Heart Disease
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Logistic Regression with a Single Predictor Coronary Heart Disease

Logistic Regression with a Single Predictor
Coronary Heart Disease

The general trend, that age is related to coronary heart disease, seems clear from the
plot, but it is difficult to see the precise nature of the relationship.
We can get a crude but somewhat more revealing picture of the relationship between the
two variables by collecting the data in groups of ten observations and plotting mean age
against the proportion of individuals with CHD.
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Logistic Regression with a Single Predictor Coronary Heart Disease

Logistic Regression with a Single Predictor
Coronary Heart Disease

> age.means <- rep(0,10)

> chd.means <- rep(0,10)

> for(i in 0:9)age.means[i+1]<-mean(

+ chd.data[(10*i+1):(10*i+10),2])

> age.means

[1] 25.4 31.0 34.8 38.6 42.6 45.9 49.8 55.0 57.7 63.0

> for(i in 0:9)chd.means[i+1]<-mean(

+ chd.data[(10*i+1):(10*i+10),3])

> chd.means

[1] 0.1 0.1 0.2 0.3 0.3 0.4 0.6 0.7 0.8 0.8
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Logistic Regression with a Single Predictor Coronary Heart Disease

Logistic Regression with a Single Predictor
Coronary Heart Disease

> plot(age.means,chd.means)

> lines(lowess(age.means,chd.means,iter=1,f=2/3))
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Logistic Regression with a Single Predictor The Logistic Regression Model

Logistic Regression with a Single Predictor
The Logistic Regression Model

For notational simplicity, suppose we have a single predictor, and define
p(x) = Pr(Y = 1|X = x) = E (Y |X = x).
Suppose that, instead of the probability of heart disease, we consider the odds as a
function of age.
Odds range from zero to infinity, so the problem fitting a linear model to the upper
asymptote can be eliminated.
If we go one step further and consider the logarithm of the odds, we now have a
dependent variable that ranges from −∞ to +∞.
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Logistic Regression with a Single Predictor The Logistic Regression Model

Logistic Regression with a Single Predictor
The Logistic Regression Model

Suppose we try to fit a linear regression model to the log-odds variable.
Our model would now be

logit(p(x)) = log

(
p(x)

1− p(x)

)
= β0 + β1x (1)

If we can successfully fit this linear model, then we also have successfully fit a nonlinear
model for p(x), since the logit function is invertible, so after taking logit−1 of both sides,
we obtain

p(x) = logit−1(β0 + β1x) (2)

where

logit−1(w) =
exp(w)

1 + exp(w)
=

1

1 + exp(−w)
(3)
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Logistic Regression with a Single Predictor The Logistic Regression Model

Logistic Regression with a Single Predictor
The Logistic Regression Model

The above system generalizes to more than one predictor, i.e.,

p(x) = E (Y |X = x) = logit−1(β′x) (4)
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Logistic Regression with a Single Predictor The Logistic Regression Model

Logistic Regression with a Single Predictor
The Logistic Regression Model

It turns out that the system we have just described is a special case of what is now
termed a generalized linear model.
In the context of generalized linear model theory, the logit function that “linearizes” the
binomial proportions p(x) is called a link function.
In this module, we shall pursue logistic regression primarily from the practical standpoint
of obtaining estimates and interpreting the results.
Logistic regression is applied very widely in the medical and social sciences, and entire
books on applied logistic regression are available.
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Logistic Regression with a Single Predictor
Fitting with glm

Fitting a logistic regression model in R is straightforward.
You use the glm function and specify the binomial distribution family and the logit link
function.
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Logistic Regression with a Single Predictor Fitting with glm

Logistic Regression with a Single Predictor
Fitting with glm

> fit.chd <- glm(CHD ~AGE, family=binomial(link="logit"))

> summary(fit.chd)

Call:

glm(formula = CHD ~ AGE, family = binomial(link = "logit"))

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9407 -0.8538 -0.4735 0.8392 2.2518

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.12630 1.11205 -4.61 4.03e-06 ***

AGE 0.10695 0.02361 4.53 5.91e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 136.66 on 99 degrees of freedom

Residual deviance: 108.88 on 98 degrees of freedom

AIC: 112.88

Number of Fisher Scoring iterations: 4
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Logistic Regression with a Single Predictor
Plotting Model Fit

Remember that the coefficient estimates are for the transformed model. They provide a
linear fit for logit(p(x)), not for p(x). However, if we define an inverse logit function, we
can transform our model back to the original metric.
Below, we plot the mean AGE against the mean CHD for groups of 10 observations, then
superimpose the logistic regression fit, transformed back into the probability metric.

> pdf("Scatterplot02.pdf")

> logit.inverse <- function(x){1/(1+exp(-x))}

> plot(age.means,chd.means)

> lines(AGE,logit.inverse(predict(fit.chd)))
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Logistic Regression with a Single Predictor Plotting Model Fit

Logistic Regression with a Single Predictor
Plotting Model Fit
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Logistic Regression with a Single Predictor Interpreting Model Coefficients

Logistic Regression with a Single Predictor
Interpreting Model Coefficients

Suppose there is a single predictor, and it is categorical (0,1). How can one interpret the
coefficient β1?
Consider the odds ratio, the ratio of the odds when x = 1 to the odds when x = 0.
According to our model, logit(p(x)) = exp(β0 + β1x), so the log of the odds ratio is given
by

log(OR) = log

[
p(1)/(1− p(1))

p(0)/(1− p(0))

]
= log [p(1)/(1− p(1))]− log [p(0)/(1− p(0))]

= logit(p(1))− logit(p(0))

= β0 + β1 × 1− (β0 + β1 × 0)

= β1 (5)
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Logistic Regression with a Single Predictor Interpreting Model Coefficients

Logistic Regression with a Single Predictor
Interpreting Model Coefficients

Exponentiating both sides, we get

OR = exp(β1) (6)

Suppose that X represents the presence or absence of a medical treatment, and β1 = 2.
This means that the odds ratio is exp(2) = 7.389. If the event is survival, this implies
that the odds of surviving are 7.389 times as high when the treatment is present than
when it is not.
You can see why logistic regression is very popular in medical research, and why there is a
tradition of working in the “odds metric.”
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Logistic Regression with a Single Predictor Interpreting Model Coefficients

Logistic Regression with a Single Predictor
Interpreting Model Coefficients

In our coronary heart disease data set, the predictor is continuous.
Interpreting model coefficients when a predictor is continuous is more difficult.
Recalling the form of the fitted function for p(x), we see that it does not have a constant
slope.
By taking derivatives, we compute the slope as β1p(x)(1− p(x)). Hence, the steepest
slope is at p(x) = 1/2, at which x = −β0/β1, and the actual slope is β1/4.
In toxicology, this is called LD50, because it is the dose at which the probability of death
is 1/2.
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Logistic Regression with a Single Predictor
Interpreting Model Coefficients

So a rough “rule of thumb” is that when X is near the middle of its range, a unit change
in X results in a change of β1/4 units in p(x).
More precise calculations can be achieved with the aid of R and the logit−1 function.
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Logistic Regression with a Single Predictor Interpreting Model Coefficients

Logistic Regression with a Single Predictor
Interpreting Model Coefficients

Example (CHD vs. AGE)

We saw that, in our CHD data, the estimated value of β1 is 0.1069, and the estimated
value of β0 is −5.1263.
This suggests that, around the age of 45, an increase of 1 year in AGE corresponds
roughly to an increase of 0.0267 in the probability of coronary heart disease.
Let’s do the calculations by hand, using R.
> beta.1 <- coefficients(fit.chd)[2]

> beta.0 <- coefficients(fit.chd)[1]

> predict.45 <- logit.inverse(beta.0 + beta.1 * 45)

> predict.46 <- logit.inverse(beta.0 + beta.1 * 46)

> change <- predict.46 - predict.45

> results <- data.frame(t(as.numeric(c(predict.45,

+ predict.46,change, beta.1/4))))

> colnames(results) <- c("predict.45","predict.46",

+ "change",".25*beta.1")

> results

predict.45 predict.46 change .25*beta.1

1 0.422195 0.4484776 0.02628253 0.02673629
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Logistic Regression with a Single Predictor Interpreting Model Coefficients

Logistic Regression with a Single Predictor
Interpreting Model Coefficients

The numbers demonstrate that, in the “linear zone” near the center of the plot, the rule
of thumb works quite well.
The rule implies that for every increase of 4 units in AGE , there will be roughly a β1

increase in the probability of coronary heart disease.
We can simplify the calculations on the preceding slide by using the predict function on
the fit object.
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Logistic Regression with a Single Predictor Interpreting Model Coefficients

Logistic Regression with a Single Predictor
Interpreting Model Coefficients

Example (CHD vs. AGE)

Suppose we wish to obtain predicted probabilities for ages 45 through 50.
We set up a data frame with the new AGE data. Note that you must use the exact same
name as the predictor variable in the data frame you analyzed.
> my.data <- data.frame(45:50)

> colnames(my.data) <- c("AGE")

> rownames(my.data) <- as.character(my.data$AGE)

Using the predict function is straightforward.
However, to obtain the values in the correct (probability) metric, we must remember to
use the type = "response" option!
> predict(fit.chd,newdata = my.data,type="response")

45 46 47 48 49 50

0.4221950 0.4484776 0.4750511 0.5017666 0.5284721 0.5550155
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Assessing Model Fit in Logistic Regression The Deviance Statistic

Assessing Model Fit in Logistic Regression
The Deviance Statistic

In multiple linear regression, the residual sum of squares provides the basis for tests for
comparing mean functions.
In logistic regression, the residual sum of squares is replaced by the deviance, which is
often called G 2. Suppose there are k data groupings based on ni , i = 1, . . . , k binomial
observations. The deviance is defined for logistic regression to be

G 2 = 2
k∑

i=1

[
yi log

(
yi
ŷi

)
+ (ni − yi ) log

(
ni − yi
ni − ŷi

)]
(7)

where ŷi = ni p̂(xi ) are the fitted numbers of successes in ni trials in the ith grouping.
The degrees of freedom associated with the analysis is the number of groupings n used in
the calculation minus the number of free parameters in β that were estimated.
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Assessing Model Fit in Logistic Regression
Comparing Models

Comparing models in logistic regression is similar to regular linear regression.
For two nested models, the difference in deviances is treated as a chi-square with degrees
of freedom equal to the difference in the degrees of freedom for the two models.
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Assessing Model Fit in Logistic Regression
Test of Model Fit

When the number of trials ni > 1, the deviance G 2 can be used to provide a
goodness-of-fit test for a logistic regression model.
The test compares the null hypothesis that the mean function used is adequate versus the
alternative that a separate parameter needs to be fit for each value of i (this latter case is
called the saturated model).
When all the ni are large enough, G 2 can be compared with the χ2

n−p distribution to get
an approximate p-value.
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Assessing Model Fit in Logistic Regression
Test of Model Fit

An alternative statistic is the Pearson X 2

X 2 =
k∑

i=1

[
(yi − ŷi )

2

(
1

ŷi
+

1

ni − ŷi

)]

=
k∑

i=1

ni (yi/ni − θ̂(xi ))2

θ̂(xi )(1− θ̂(xi ))
(8)

According to ALR, X 2 and G 2 have the same large-sample distribution and often give the
same inferences. But in small samples, there may be differences, and sometimes X 2 may
be preferred for testing goodness-of-fit.
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Logistic Regression with Several Predictors

As an example of logistic predictors, Weisberg presents data from the famous Titanic
disaster. (Frank Harrell presents a much more detailed analysis of the Titanic in his
superb book Regression Modeling Strategies).
Of 2201 known passengers and crew, only 711 are reported to have survived.
The data in the file titanic.txt from Dawson (1995) classify the people on board the
ship according to their Sex as Male or Female, Age, either child or adult, and Class,
either first, second, third, or crew.
Not all combinations of the three factors occur in the data, since no children were
members of the crew. For each age/sex/class combination, the number of people M and
the number surviving Surv are also reported.
The data are shown in Table 12.5.
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Logistic Regression with Several Predictors

262 LOGISTIC REGRESSION

saturated model). When all the mi are large enough, G2 can be compared with the
χ2

n−p distribution to get an approximate p-value. The goodness-of-fit test is not
applicable in the blowdown example because all the mi = 1.

Pearson’s X2 is an approximation to G2 defined for logistic regression by

X2 =
n∑

i=1

[
(yi − ŷi )

2
(

1

ŷi

+ 1

mi − ŷi

)]

=
n∑

i=1

mi(yi/mi − θ̂ (xi ))
2

θ̂ (xi )(1 − θ̂ (xi ))
(12.9)

X2 and G2 have the same large-sample distribution and often give the same infer-
ences. In small samples, there may be differences, and sometimes X2 may be
preferred for testing goodness-of-fit.

Titanic
The Titanic was a British luxury passenger liner that sank when it struck an iceberg
about 640 km south of Newfoundland on April 14–15, 1912, on its maiden voyage
to New York City from Southampton, England. Of 2201 known passengers and
crew, only 711 are reported to have survived. The data in the file titanic.txt
from Dawson (1995) classify the people on board the ship according to their Sex as
Male or Female, Age, either child or adult, and Class, either first, second, third, or
crew. Not all combinations of the three factors occur in the data, since no children
were members of the crew. For each age/sex/class combination, the number of
people M and the number surviving Surv are also reported. The data are shown in
Table 12.5.

Table 12.6 gives the value of G2 and Pearson’s X2 for the fit of five mean
functions to these data. Since almost all the mi exceed 1, we can use either G2

or X2 as a goodness-of-fit test for these models. The first two mean functions,
the main effects only model, and the main effects plus the Class × Sex interac-
tion, clearly do not fit the data because the values of G2 and X2 are both much
larger then their df, and the corresponding p-values from the χ2 distribution are

TABLE 12.5 Data from the Titanic Disaster of 1912. Each Cell
Gives Surv/M , the Number of Survivors, and the Number of
People in the Cell

Female Male
Class Adult Child Adult Child

Crew 20/23 NA 192/862 NA
First 140/144 1/1 57/175 5/5
Second 80/93 13/13 14/168 11/11
Third 76/165 14/31 75/462 13/48
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Logistic Regression with Several Predictors

ALR fits a sequence of 5 models to these data.
Since almost all the mi exceed 1, we can use either G 2 or X 2 as a goodness-of-fit test for
these models.
The first two mean functions, the main effects only model, and the main effects plus the
Class × Sex interaction, clearly do not fit the data because the values of G 2 and X 2 are
both much larger then their df, and the corresponding p-values from the χ2 distribution
are 0 to several decimal places.
The third model, which adds the Class × Age interaction, has both G 2 and X 2 smaller
than its df, with p-values of about 0.64, so this mean function seems to match the data
well.
Adding more terms can only reduce the value of G 2 and X 2, and adding the third
interaction decreases these statistics to 0 to the accuracy shown.
Adding the three-factor interaction fits one parameter for each cell, effectively estimating
the probability of survival by the observed probability of survival in each cell. This will
give an exact fit to the data.
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Logistic Regression with Several Predictors

> mysummary <- function(m){c(df=m$df.residual,G2=m$deviance,

+ X2=sum(residuals(m,type="pearson")^2) )}

> m1 <- glm(cbind(Surv,N-Surv)~Class+Age+Sex, data=titanic, family=binomial())

> m2 <- update(m1,~.+Class:Sex)

> m3 <- update(m2,~.+Class:Age)

> m4 <- update(m3,~.+Age:Sex)

> m5 <- update(m4,~Class:Age:Sex)

> ans <- mysummary(m1)

> ans <- rbind(ans,mysummary(m2))

> ans <- rbind(ans,mysummary(m3))

> ans <- rbind(ans,mysummary(m4))

> ans <- rbind(ans,mysummary(m5))

> row.names(ans) <- c( "Main effects only",

+ "Main Effects + Class:Sex",

+ "Main Effects + Class:Sex + Class:Age",

+ "Main Effects + All 2 Factor Interactions",

+ "Main Effects + All 2 and 3 Factor Interactions")
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Logistic Regression with Several Predictors

> options(scipen=1,digits=3)

> summary(m3)

Call:

glm(formula = cbind(Surv, N - Surv) ~ Class + Age + Sex + Class:Sex +

Class:Age, family = binomial(), data = titanic)

Deviance Residuals:

1 2 3 4 5 6 7 8

0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0001

9 10 11 12 13 14

0.0000 0.0000 -0.8745 0.8265 0.3806 -0.3043

Coefficients: (1 not defined because of singularities)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.897 0.619 3.06 0.0022 **

ClassFirst 1.658 0.800 2.07 0.0383 *

ClassSecond -0.080 0.688 -0.12 0.9073

ClassThird -2.115 0.637 -3.32 0.0009 ***

AgeChild 0.338 0.269 1.26 0.2094

SexMale -3.147 0.625 -5.04 4.7e-07 ***

ClassFirst:SexMale -1.136 0.821 -1.38 0.1662

ClassSecond:SexMale -1.068 0.747 -1.43 0.1525

ClassThird:SexMale 1.762 0.652 2.70 0.0069 **

ClassFirst:AgeChild 22.424 16495.727 0.00 0.9989

ClassSecond:AgeChild 24.422 13007.888 0.00 0.9985

ClassThird:AgeChild NA NA NA NA

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 671.9622 on 13 degrees of freedom

Residual deviance: 1.6854 on 3 degrees of freedom

AIC: 70.31

Number of Fisher Scoring iterations: 21
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Logistic Regression with Several Predictors

> xtable(ans)

df G2 X2
Main effects only 8.00 112.57 103.83

Main Effects + Class:Sex 5.00 45.90 42.77
Main Effects + Class:Sex + Class:Age 3.00 1.69 1.72

Main Effects + All 2 Factor Interactions 2.00 0.00 0.00
Main Effects + All 2 and 3 Factor Interactions 0.00 0.00 0.00
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Generalized Linear Models

Both the multiple linear regression model discussed earlier in this book and the logistic
regression model discussed in this chapter are particular instances of a generalized linear
model.
Generalized linear models all share three basic characteristics:
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Generalized Linear Models

1 The distribution of the response Y , given a set of terms X , is distributed according to an
exponential family distribution. The important members of this class include the normal
and binomial distributions we have already encountered, as well as the Poisson and
gamma distributions.

2 The response Y depends on the terms X only through the linear combination β′X.
3 The mean E (Y |X = x) = m(β′x) for some kernel mean function m. For the multiple

linear regression model, m is the identity function, and for logistic regression, it is the
logistic function. There is considerable flexibility in selecting the kernel mean function.
Most presentations of generalized linear models discuss the link function, which
technically is defined as the inverse of m rather than m itself.
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